Wednesday, April 27, 2016

The tragedy of the climate technocrats

Interesting piece by Steve Waldman critiquing my two favorite econbloggers, DeLong and Krugthulu, for technocratic approaches in a moralizing political context. I've altered it below to make it about climate instead of economics, and removed references to the two (UPDATE - from the comments, I'm not sure this experiment of mine is very clear, so I've altered it some more):

[The technocrat] laments that we have been “mugged by the moralizers” and admonishes us that “climate policy analysis is not a morality play“.

But the thing is, human affairs are a morality play, and climate policy, if it is to be useful at all, must be an account of human affairs. I have my share of disagreements with climate technocrats, but on balance I view them as smart, well-meaning people who would do more good than harm if they had greater influence over policy. But they won’t, and they can’t, and they shouldn’t, if they exempt themselves from the moral fray.... climate technocrats in general engage in [unrealistic assumptions] when they ignore moral concerns and the constraints “legitimacy” places on feasible policy.

It should be no surprise that human collectives choose bad climate policies when they deem those policies to be alternatives to policies that are wrong or unjust. Individual human beings act against their material interests all the time, providing full employment for economists who endlessly study the “ultimatum game“. Political choice combines diffuse personal costs with powerful moral signifiers. We should expect politics, including the politics that determines climate policy, to be dripping with moralism. And sure enough, it is! This doesn’t mean that policy outcomes are actually moral. (There’s a hypothesis we can falsify quickly.) But exhortations to policy that cannot survive in terms of moral framing are nullities. They are no less absurd than proposals to “whip inflation” by demanding increased production while simultaneously imposing price ceilings.... 
On the core climate questions of the moment, the climate technocrat explicitly cedes recognizable morality to the other side - the March of Progress, the American/Western World exceptionalism - and in doing so, he cedes the argument. To be fair, moralizing technocratic positions might not be easy.... 
But even in a challenging landscape it is better to fight than to preemptively surrender. There are ways to address, in explicitly moralistic terms, the arguments of the other side.... Rather than eschewing moralism, the technocrat could turn the table on “energy poverty moralizers” and talk about the responsibilities of fossil fuel companies and their political allies... Ordinary people get this stuff....The lament of the technocrats is self-defeating, counterproductive, and ultimately poor social science. Policy ideas that cannot survive in equilibrium with achievable social mores are useless. This needn’t rule out good policy....Ex post, the “good” in good policy will be a double entendre. Policy will be both effective and right. Ex ante, both policy and morality are contested and undetermined. The policymaker’s challenge is to negotiate a space where morality and policy are mutually reinforcing, and where the results of that coherence are in fact good.
(Again, altered from the original.)

The denialist moral subtext is America Is Right/The Western World Is Right, and climate change is just another guilt trip by the Left against people who shouldn't feel guilty. The technocratic viewpoint ignores this viewpoint and doesn't try to engage or defeat it with a different moral framework.

I think like the technocrat (I think), so this is worth keeping in mind on climate, as well as for reading in its original context about economics.

Tuesday, April 26, 2016


I spent most of the last two weeks in Guatemala on a kind-of service vacation. My wife has a better claim for service, she's on the board of a nonprofit that does microcredit and business education for women entrepreneurs there. We went for a board meeting and I stayed for my Rotary Club visit that was checking out projects it has funded over the years, including her nonprofit. Above is one of the stove projects we funded. Stove costs $125 for the deluxe model, owners pay $50, Rotary paid the rest. About 70% reduction in wood use, we tried to get an idea of how quickly they got their $50 back and it wasn't clear, several months I think (when my wife left I became Best Spanish Speaker, so the fault's mine). The project's new so we can't say yet about retention, but prior ones ranged from 50-70%, better than I expected. These prices aren't cheap - they work in certain parts of the country where wood is no longer free and people area a little richer than elsewhere.

We also visited my wife's Peace Corps village from 24 years ago, she said it was unrecognizable and much better off. The women she worked with also had a different type of eco-stove they got 10 years ago and were very popular - one woman used hers in preference to a gas stove she also had. They got their stoves free from a German nonprofit but can't afford to buy more on their own.

Both projects seemed much more successful than I'd expected for eco-stoves. If the stove cooks tortillas well, then apparently you've got a good shot at success.

Other aspects: I liked Guatemala City much more than usual for large Third World cities (I was a church mouse at night though).

Bus Rapid Transit in Guatemala City - standard dedicated lane and ticketing station, and as usual for BRT it seems very successful. Add Guatemala City to Jakarta as places I've seen BRT work, and meanwhile my local towns of Palo Alto and Mountain View in Silicon Valley say they can't make it work and it's too expensive.

Traffic-isolated, dedicated bike lane. Right next to some famous church our guide for the day was showing us. And on Sundays, the main avenue outside my fancy hotel is closed to vehicles and had families everywhere walking their children down the road.

We spent a lot of time in the famous Lake Atitlan region (Villa Sumaya hotel highly recommended, peaceful and beautiful). Probably wrong time to be there, very smoky at the end of the dry season as they burn in preparation for planting. We were informed the lake is in big ecological trouble, primarily from graywater dumping (I was surprised too, I'd have guessed erosion). Anyway it appears that banana trees love the nitrogen and phosphates in graywater, so one project is to get people to construct bioswales with papyrus at the bottom and ringed with bananas partway up. Pic obviously isn't a bioswale but it is a stream outwash hitting the lake. I'm not sure what they do with the papyrus, if anything. Ornamental bananas will grow here in California, so I wonder if we can borrow the idea.

I finally saw shade-grown coffee - didn't look that biodiverse to me, but that's what the experts say. Certainly beats industrial agriculture. I also saw surprising amounts of drip irrigation for seasonal produce, which I take to be a good sign, at least during the dry season.

No time for Tikal or for wildlife areas, unfortunately. Did visit a wildlife rescue project, very worthwhile if also sad. The Mayan archaeology museum in Guatemala City is excellent though, and probably a great backgrounder for people who are smart enough to go to Tikal.

Got quite sick for 2 days. Learn from my foolishness and don't resist taking Cipro, it provides huge relief. Who needs intestinal microflora, anyway.

Last note: I'd like to see less dependence on foreign expats at the top of every organization. There is some value to them as neutrals in local politics. It might also be us foreign funders who are part of the problem. Still, that could use improvement.

Sunday, April 24, 2016

Peter Ward Tries It On

Peter Ward asks

1.  What physically is a photon? The standard answer is a photon is an elementary particle, the quantum of light and all other forms of electromagnetic radiation. This is more a concept than a description of what a photon is physically. Is it simply a massless oscillation in space?
Eli goes to the Google:  A photon is the vector boson which carries the electromagnetic force.  It is a massless particle of spin one and zero charge.  Single photons are labelled by energy, momentum and polarization where energy, E = hν and momentum k = 2π/λ

Eli might ask what is an electron?  A sufficient answer is that it is a particle of spin 1/2, unit charge and a mass of 9.10938291 x 10-31 kg.

Quantum electrodynamics provides rules for calculating the probability of photons interacting in various ways with charged particles including electrons.  As with any quantum anything, QED provides an instruction sheet on what to do, but the epistemology oft is lacking.  As John Bell once wrote there is both speakable and unspeakable in quantum mechanics and venturing into the latter is brain threatening.  Ce la vie.

It is worth mentioning that in QED charged particles do not interact directly with each other but do so by exchange of photons.  Using QED one can calculate at least in principle the probability of an electron scattering off an electron, changing the motion (or quantum state) of the electron or charged nucleus in space and time, etc.

Quantum behavior is difficult, but tractable.  Playing the game of why in the quantum realm is not recommended unless you shrink down a bit and acquire some practice.   Assembling the machinery on the blackboard scale takes some time, and anybunny who wants to see the bottom line first might go to minute 37 in the video below where Feynman calculates the interaction of two electrons and then go back and view the entire lecture.

So no, photons do not beat their kids, and asking when they stopped is not going to lead to a fruitful discussion.  They simply will not allow themselves to be forced into your theory of knowledge of choice, but humans can figure out how they will and do behave.
4. Do the photons interact with each other in space? If not, why not? If yes, how?
See the lecture.  Since photons can decay into electron-positron pairs (or other beast pairs at super high energies) and the other photons can interact with the charged particles before they recombine, yes in principle, in practice not damn much in labs with budgets under the price of unicorns.  Without virtual pair production uncharged massless particles like photons do not interact.  No gravitational attraction either, they are massless.

What about interference?  Well from the QED point of view this is a function of the interaction of photons with the charged particles at the detector, that is the interference does not exist until it is mediated by the interaction at the detector.  That also answers the question of where the photon is, it is where the detector detects it.  Some, not Eli to be sure, may not like that but that's the engineering level report.
7. We talk of an electromagnetic field that can be mapped out in three dimensions and time with a suitable sensor. What is the physical relationship of such a field to photons?
In the interest of getting to bed and the comforts of Ms. Rabett, Eli will hand this one off to Lubos and return to the other questions tomorrow.

Wednesday, April 20, 2016

Science and Engineering

As the summer approaches Eli is polishing up his ethics lecture for the REU program  Since there is nothing new under the sun, the lecture is not original, but some parts are worthwhile thinking about. Ours is a joint engineering/science program and the lecture starts by discussing the difference between the two fields.

  • Engineering is a profession
  • Engineers provide paid services to third parties
  • Engineering work is the property of the people who pay for the service
  • Engineering is a commodity economy

On the other hand

  • Science is a gift economy
  • In science those who contribute the most are the most highly valued
  • Science is characterized by mutual exchange and trust
Yes, these are idealizations and most of these should include the word should, but worth thinking about as goals and ideals.

The Uncertainty Monster Stalks Exxon

With a cabal of attorneys general gathering information about Exxon and its withholding of information that it had about the risks of climate change, some, not Eli to be sure, but some who the bunnies would not be surprised to have identified, are seeking to frame the matter as an issue of free speech.

It ain't.

It's a matter of securities law.

Publicly traded companies are required to report known risks to their business

Exxon clearly knew early on that the consequences of greenhouse gas emissions were a threat to their business, and therefore, as soon as they knew this they were required to report it.

Emphasis on as soon as, because they have put some boiler plate into their disclosures recently or at least since the SEC noticed in 2010 that there are climate risks.

Even if Exxon were uncertain, they knew there was a significant risk and they had a duty to report it.

Saturday, April 16, 2016

Quantum Computing

A reporter tried to trap Justin Trudeau (the dreamy PM of Canada according to Ms. Rabett) by asking if he could explain quantum computing and Trudeau provided a serviceable answer

Eli would like to riff off this in a slightly different way.

Generally speaking there are two types of problem solvers, the sequentialists who grind things out one step and a time.  A normal computer is like that.  

The other style is to build a complex mental model of the problem that allows for a one step solution.  That is quantum computing.

In the world of quantum electrodynamics, Julian Schwinger was the grinder and Richard Feynman the visionary.

Grantsmanship and Reviews

Go read John Snow's Grant application and the NIH reviews. 
 Project Title: An Investigation into the Mode of Communication of Cholera 
DESCRIPTION (provided by applicant):The cholera has wreaked intermittent misfortune and death upon large swaths of civilization. While its reach extends ever farther, engulfing new port cities and populations, we have come no closer to fathoming the mode of its communication nor to stopping this awful malady. The disease affects the alimentary tract first and foremost, which implies strongly that one should look to contaminated water or food to explain its transmission. Its epidemic spread is along the pathways of human commerce, but it spreads no faster than people travel. As it usually appears first at seaports, it would appear to be spread by mariners, but it only affects mariners sailing from cholera-affected ports. There are numerous examples of the cholera apparently being transmitted by consumption of water polluted by excreta. Nonetheless, the hypothesis that cholera travels through humans and especially through contaminated water has not been put to crucial scientific examination. Herein, the PI proposes to conduct that crucial study.
The Panel was having none of it
We believe that the proposal would have been stronger if the PI had forged some institutional ties, or had proposed to collaborate with the local sanitarian community and to integrate this project into a broader effort to study and control cholera. His lack of experience doing this type of research, his self-employment as a general practitioner of medicine with a practice largely devoted to administering anesthesia, his coolness for collaborating with the broader London medical community, and his single-minded attitude toward other currently debated scientific theories, all underscore our concern about the research environment and the likelihood that the PI can successfully conduct this work as proposed.
Moar, much moar at the link, but if a bunny is hopping about London looking at the sites a visit to the pump handle is worthwhile if only to say you were there and the pub opposite is not bad

Bill Gray has passed. An appreciation and depreciation of style in science

William Gray, a person who had the most deep down understanding of  hurricanes than any other, passed yesterday. His former student, protege and collaborator, Phil Klotzbach, has written an appreciation of Gray

With rare exception Rabett Run's policy is to speak no evil of the dead, or even the retired (Eli will soon join the tribe), still Gray reminded Eli of a number of senior guys he knew who did their training when theory was a weak reed and worthy only of derision, but by careful observation developed a set of ad hoc models, which turned out to be way wrong but extremely useful for prediction. 

Joel Achenbach had the ultimate read on Gray back in 2006 when he was already retired.  Read it if you have not

As Eli noted at the time, Gray was not one to go quietly into the night, but he also was not one to consider that he was ever mistaken.  Owning an area of knowledge, if only for a minute tends to do that to people.

Friday, April 15, 2016

Pay the Tax

It's, April 15, tax day here in the US, and Eli and Brian have been thinking about how to save the world.

Everybunny knows that a carbon tax is the best way to  minimize the damage from climate change that is coming, and we all know that the chance of a real carbon tax anywhere depends on changing the political climate.

The elevator version is that it is fairly simple to calculate one's own emissions, just electricity, heating and fuel (yes, there are other things, but that is not a bad estimate and fudge factors can always be added). With those three number and the amount of CO2 generated for each (easy to find on the net) one can pick a price of carbon of one's liking and calculate the tax on your cell phone (Millenials), spreadsheed (GenX) or the back of an envelope (folks as old as Eli)

Eli will even provide a Google Sheet to calculate the tax.  The example covers what we used in the hutch in March.

Since this sheet is live, Eli is going to paste the initial values at the bottom of this post so that anybunny can check if somebunny messes about with it, but the structure it should be trivial to reproduce.

With the spreadsheet you can calculate your own personal carbon tax. Donate that amount to people who will change the political climate and to support mitigation in the underdeveloped world. Split it as you like, but let the people and organizations you donate to know WHY you are donating.

Using Eli Rabett's handy dandy Carbon Tax Calculator, bunnies can calculate their own carbon tax. What to do with it.

Eli suggests donating to those supporting a carbon tax, such as, and he will be happy to add names here for USAans, donations from others are a nono, but they have their own politics

Sen. Sheldon Whitehouse (D-RI)
Sen. Brian Schatz (D-HI) - running this year
who have introduced the American Opportunity Carbon Free Act

and also support those running against types like Lamar Smith, Chair of the House Science Committee who has swallowed the complete ball of denial.  Even in cases where a win may not be possible, putting down a marker can concentrate minds.  Smith is opposed by
Tom Wakely in TX-21

YMMV, and Eli looks forward to a lively discussion, but excuse him for a moment there is a check to mail.  Suggestions welcome also for donations to support mitigation in the developing world

This has been a short version of Eli Rabett's (and Brian's) Simple Plan To Save The World, or at least help get rid of the Lamar Smiths.

Wednesday, April 13, 2016

Peter Ward Brings New Thermodynamics

Yes, Eli's new favorite toy pinata, Peter L. Ward (As Hank points out below not to be confused with Peter D. Ward, an entirely reasonable fellow) just continues to amaze.  Now some, not Eli to be sure, might consider Eli's behavior in this matter to be a tad evil, but there is good science to be learned fisking Ward apart.  Why just in his next paragraph from the one Eli started with he continues to misunderstand pretty much all of thermodynamics and a whole bunch of other stuff.

The concept of flux as presently calculated is incorrect because it assumes that thermal energy is the same at every frequency.We observe that when ozone is depleted, more UV-B reaches Earth. We measure the changes in UV-B at earth’s surface. UV-B is the hottest solar radiation to reach Earth. If enough UV-B reached Earth, it could warm Earth to be 48 times hotter than Earth is. Luckily the amounts are low, the dosage is low. One can make the case that the mean surface temperature of Earth is directly proportional to the mean optical thickness of the ozone layer modified primarily by volcanic aerosols in the lower stratosphere that reflect/scatter solar radiation worldwide.
Note the bolded phrase "thermal energy is the same at every frequency" because is it is a keeper.

To explain why, Eli would remind the bunnies that that the frequency distribution of light emitted from a body at a temperature T is described by the black body curve that our old friend Planck showed how to calculate and there are lots of apps like this one from PheT to show the spectrum

To understand where Peter Ward goes wrong, one only has to push or access the setup function on your monitor.  There usually is a reference to something called color temperature (artists and art directors of ad agencies are very aware of this).  What it means is that when white is displayed on the screen the spectrum matches the blackbody spectrum of emission from a, guess what, black body of that temperature.  In general one should only discuss the temperature of radiation fields emitted from (near) black bodies.

Assigning a color temperature to solar radiation at the top of the atmosphere, makes a bunch of sense, it's about 5800 K.  Assigning a temperature at the surface is a useful approximation (Rabett's First Law All approximations are wrong, some are useful.  Rabett's Second Law:  All surveys are really wrong, some are decent approximations).  Talking about the thermal energy of anything requires that the anything has a measurable temperature.  In the case of sunlight that is as Eli said, about 5800K (Bunnies can dial it in on the app).  At 5800 K the amount of energy in the field of the electromagnetic radiation below 300 nm is about 3.6%.  Notice that this does not require talking about photons with respect to the light but only classical electromagnetism.

So where is the good Peter L. Ward coming from when he says:
If enough UV-B reached Earth, it could warm Earth to be 48 times hotter than Earth is.
(Eli hides his ears in shame for missing this.  Rrrussel notes beow that 48 x 280K = 13,440K a reasonable temperature for the interior of a white dwarf star)

To see why one should start with a description of a black body in physics speak.  Black bodies are collections of oscillators which can jiggle at any frequency.  When the oscillator jiggles it can emit electromagnetic radiation at the frequency it jiggles at.  If that were the only issue, then Ward would be a lot closer to reality, but it is not.  Before Planck this was how physicists tried to calculate the black body curve by assuming the oscillator could emit any amount of energy at the jiggle frequency..  When Rayleigh and Jeans tried it they found the "ultraviolet catastrophe", where the amount of thermal energy in the UV went to infinity in the calculation (but of course not in reality).  However, the probability of exciting a high frequency (e.g. high energy) jiggle is not the same as exciting a low frequency one.  This is what Planck showed, that the probability of exciting an oscillator with frequency ν is (exp[hν/kBT]-1)-1 and thus the average energy of an oscillator at frequency ν is just


where the energy of the oscillator is hν. The probability of exciting a high frequency oscillation goes rapidly to zero, limiting the amount of energy in the UV emitted by the Sun (to 3.6% of the total energy in the radiation field below 300 nm).  When exchanging with Peter Ward, Eli would strongly recommend reminding him about how the black body radiation curve is calculated (and how the calculation matches measurements).

So the bunnies see that Peter L. Ward needs a course in thermodynamics, but perhaps not, given the dangers of thermal science.  Carnot, died at 36 in an insane asylum, Benjamin Thompson, Count Rumford, was attacked by a mob and driven into exile, Ludwig Boltzmann committed suicide as did Paul Ehrenfest.  Ignorance of thermal science may be a good thing.

Eli, . . . . .    Eli is an old bunny.